Some Generalizations of Mulit-Valued Version of Schauder’s Fixed Point Theorem with Applications
نویسندگان
چکیده
In this article, a generalization of a Kakutani-Fan fixed point theorem for multi-valued mappings in Banach spaces is proved under weaker upper semi-continuity condition and it is further applied to derive a generalized version of Krasnoselskii’s fixed point theorem and some nonlinear alternatives of Leray-Schauder type for multi-valued closed mappings in Banach spaces. RESUMEN En este artículo probamos una generalización para el teorema del punto fijo de KakutaniFan para aplicaciones multi-valuadas en espacios de Banach, bajo condición de semi-continuidad superior debil. Este resultado es aplicado para obtener una versión generalizada del teorema del punto fijo Krasnoselskii y algunas alternativas de tipo Leray-Schauder para aplicaciones multi-valuadas cerradas en espacios de Banach.
منابع مشابه
Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کاملSome local fixed point results under $C$-class functions with applications to coupled elliptic systems
The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کامل